

 Curriculum Guide

Mission Pack:
Fly with Python

 Fly with Python ​ ​ ​ ​ ​ ​ .

Table of Contents

Fly with Python Overview​ 2

📅 Pacing Guide​ 3

Mission 1: Welcome​ 4

Mission 2: Introducing CodeAIR​ 5

Mission 3: Pre-Flight Check​ 7

🚁 Unit 1 Remix and Assessment​ 10

Mission 4: Flight Safety​ 11

Mission 5: Hovering Flight​ 14

🚁 Unit 2 Remix and Assessment​ 18

Mission 6: Navigate​ 19

Mission 7: Attitude Control – coming soon!

🚁 Unit 3 Remix and Assessment​

Appendix A: Required Resources​ 22

Appendix B: Our Approach​ 23

Appendix C: Teacher Resources​ 24

Appendix D: Assessing Student Projects​ 26

–1–

 Fly with Python ​ ​ ​ ​ ​ ​ .

Fly with Python Overview
This mission pack teaches Python coding by controlling our next-generation autonomous
educational drone, designed to integrate AI and Python programming into the classroom.
This curriculum will inspire students with engaging STEM projects that blend advanced
technology with hands-on learning.

CodeAIR and the Fly with Python Mission Pack revolutionize learning with its onboard
neural network and camera. This allows students to deploy machine learning models for

real-time object and pattern recognition. CodeAIR operates autonomously, providing a seamless and
interactive coding experience without the need for constant radio control.

Pre-Mission Assignment
If your students come with no Computer Science background, it is important to start by building a
foundation of computational thinking. Dedicate some time for students to learn basic terms, such
as algorithm, program, and debug. See the Firia Labs collection of Unplugged Activities at
https://learn.firialabs.com/curricula/cs-unplugged.

Mission 1: Welcome
Take a tour of the CodeSpace Development Environment. Learn how to use the text editor, hints,
CodeTrek and tools.

Mission 2: Introducing CodeAIR
Students get an introduction to CodeAIR. The device gets connected, and students run some
code!

Mission 3: Pre-Flight Check
All systems GO for takeoff? Test out some basic Python coding to control CodeAIR’s lights and
sounds!

Mission 4: Flight Safety
Good drones don’t jump into the sky unexpectedly! Code a safety interlock to be sure your
CodeAIR stays put until you are ready to fly.

Mission 5: Hovering Flight
Take off! Get your drone in the air for an autonomous hover, and learn more Python coding as
you explore the Laser Range sensors.

Mission 6: Navigate
Navigate the skies by getting a fix on the ground with CodeAIR’s flow sensor. Explore the
capabilities and limitations of onboard positioning systems.

Mission 7: Attitude Control – coming soon!
Check your attitude, dude! No, not your demeanor…I’m talking about your drone’s airframe here!

–2–

https://learn.firialabs.com/curricula/cs-unplugged

 Fly with Python ​ ​ ​ ​ ​ ​ .

Suggested Pacing Guide
The way you present the Mission Pack and its missions, objectives and assignments is up to you. Students can work
independently and at their own pace to complete the missions. Or you can work together as a class and engage in
extensions and cross curricular activities with the missions. A suggested timeline is provided below. It includes time
for students to explore and investigate the code. Completing the mission pack can take more or less time, depending
on your students, their interests and previous experience, the time you have to spend on it, and many other factors. It
is up to you!

This timeline is based on a 5-day, 45-minute class period.

Week 1 Unplugged activities: See CS Unplugged in the learning portal

Week 2 Mission 1
Mission 1 Review

Mission 2
Mission 2 Review

Mission 2 Extensions
or cross curricular

Mission 3
Obj 1-4 & Q2

Mission 3
Obj 5-6

Week 3 Mission 3
Obj 7 and Q3

Mission 3
Obj 8

Mission 3 Extensions
or cross curricular

Mission 3 Review
Unit 1 Remix Step 1

Unit 1 Remix
Step 2-3

Week 4 Unit 1 Remix
Step 4

Unit 1 Remix ​
Step 5

Unit 1 Review /
Assessment

Mission 4
Obj 1-4

Mission 4
Obj 5-6 / Review

Week 5 Mission 4 Extensions
or cross curricular

Mission 5
Obj 1-2

Mission 5
Obj 3

Mission 5
Obj 4-5

Mission 5
Obj 6

Week 6 Mission 5
Obj 7, Q2

Mission 5
Obj 8

Mission 5
Obj 9, Q3

Mission 5
Obj 10

Mission 5 Extensions
or cross curricular

Week 7 Mission 5 Review
Unit 2 Remix Step 1

Unit 2 Remix
Step 2-3

Unit 2 Remix
Step 4

Unit 2 Remix
Step 5

Unit 2 Review /
Assessment

Week 8 Mission 6
Obj 1

Mission 6
Obj 2, Q1

Mission 6
Obj 3

Mission 6
Obj 4, Q2

Mission 6
Obj 5

Week 9 Mission 6
Obj 6, Q3

Mission 6
Obj 7

Mission 6 Extensions
or cross curricular

Mission 6 Review
Extensions

Week 10

Week 11

Week 12

Week 13

Week 14

Week 15

Week 16

–3–

https://learn.firialabs.com/curricula/cs-unplugged

 Fly with Python ​ ​ ​ ​ ​ ​ .

Mission 1: Welcome Time Frame: 20-30 minutes

Mission Goal: Students will learn about the
CodeSpace learning environment.

Learning Targets

●​ I can navigate CodeSpace.
●​ Identify major parts of the Codespace interface:

Mission Bar, Objective Panel, text editor,
CodeTrek, Toolbox, and Lesson Navigation
Controls

Key Concepts
●​ Follow instructions in the Lesson Panel

carefully. There is a lot of important reading!
●​ Look for “tool icons” to collect tools in your

Toolbox as you go.

Assessment Opportunities
●​ Quiz after Objective 4
●​ Add tool to toolbox (Objective 3)
●​ Review questions

Success Criteria
​ Complete each Objective Goal
​ Complete Mission 1 Assignment

Standards

CSTA Standards Grades 9-10 CSTA Standards Grades 11-12 AI4K12 Standards Grades 9-12

●​ 3A-IC-27 ●​ 3B-AP-20

Student Materials
●​ Laptop/computer with Chrome browser
●​ Student account / Flying with Python license
●​ Getting Started with CodeSpace (slides)
●​ CodeAIR Mission 1 Assignment (PDF)

Teacher Resources
●​ License and Dashboard Resources
●​ CodeAIR Mission 1 Assignment Answers
●​ CodeAIR Mission 1 Review Questions

Vocabulary

Objective The steps in the mission; has a goal to accomplish.

Text editor Where you type the code.

Debugging The process of understanding what the computer is actually doing and then
changing the code to do what you want it to do.

Toolbox A place in CodeSpace to keep information you learn about programming concepts
so you can use it later when you need the information.

Simulation A 3D environment that lets you see the robot move and interact in a virtual world.

New Python Code

Teacher Notes
●​ Create a class on the teacher dashboard. Generate a join code for the class section to give students.
●​ This lesson is the first lesson in all the mission packs. If your students have completed other Firia mission

packs, they will already know the information. You can choose to have them complete the mission as a
review and refresher, or you can unlock the next mission.

●​ Review questions can be used as a class review, made into a Kahoot!, or used to create an exam in your
learning management system.

Extensions
●​ none

Cross-Curricular
●​ none

–4–

https://learn.firialabs.com/teacher-resources/CodeX/Getting%20Started%20in%20Codespace.pptx
https://learn.firialabs.com/teacher-resources/codeair/unit-1/CodeAIR%20Mission%201%20Assignment.pdf
https://learn.firialabs.com/curricula/license-and-dashboard
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-solutions/unit-1/CodeAIR%20Mission%201%20Assignment%20Answers.pdf
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-assessments/unit-1/CodeAIR%20Mission%201%20Review%20Questions.pdf

 Fly with Python ​ ​ ​ ​ ​ ​ .

Mission 2: Introducing CodeAIR Time Frame: 30-40 minutes

Mission Goal: Students will learn about the CodeAIR
drone and its LED lights.

Learning Targets

●​ I can identify the parts of CodeAIR.
●​ I can connect CodeAIR to CodeSpace.
●​ I can create and save a file in CodeSpace.
●​ I can control LEDs on CodeAIR with code.

Key Concepts
●​ The battery is charging anytime CodeAIR is

plugged in.
●​ CodeAIR must be turned on to connect to

CodeSpace and run code. The switch is tiny!
●​ Code typed into the text editor is automatically

saved to your personal file-system.
●​ CodeTrek is like your own personal tutor,

guiding you through programming challenges.
●​ Python code is case sensitive. Punctuation is

important! That is the first thing to check if an
error occurs in code.

Assessment Opportunities
●​ Quiz after Objective 2
●​ Quiz after Objective 8
●​ Complete the program Lights1
●​ Mission 2 Assignment
●​ Mission 2 Review questions

Success Criteria
​ Identify key parts of CodeAIR
​ Connect CodeAIR to CodeSpace
​ Create a program file with code
​ Lights1 works correctly and runs without errors
​ Complete Mission 2 Assignment

Standards

CSTA Standards Grades 9-10 CSTA Standards Grades 11-12 AI4K12 Standards Grades 9-12

●​ 3A-CS-01 ●​ 3B-CS-02

Student Materials
●​ Laptop/computer with Chrome browser
●​ CodeAIR drone
●​ CodeAIR Mission 2 Assignment (PDF or doc)
●​ CodeAIR Flying Guide (PDF or doc)

Teacher Resources
●​ Getting Started instructions
●​ CodeAIR Flying Guide (PDF or doc)
●​ CodeAIR Mission 2 Assignment Answers
●​ CodeAIR Mission 2 Review Questions

Vocabulary

CodeAIR A high performance micro-drone that’s fully programmable in Python.

LEDs Light emitting diodes; tiny and efficient electronic components that produce light.
CodeAIR has 8 blue indicator LEDs, numbered 0 through 7.

Buttons Momentary push buttons on CodeAIR that you can program. The user interface push
buttons are B0 and B1.

Motors Brushed DC motors that are electric and power the propellers to lift CodeAIR into the air
and maneuver it around.

Static Electricity A charge that builds and can cause a jolt and spark that happens when grounded.

CPU Central Processing Unit; the brain of the computer. It interacts with all the peripherals.

Peripheral Devices that give input or output. CodeAIR’s peripherals include LED lights, speaker,
motors, sensors and pushbuttons.

Code Instructions to the computer.

–5–

https://learn.firialabs.com/teacher-resources/codeair/unit-1/CodeAIR%20Mission%202%20Assignment.pdf
https://learn.firialabs.com/teacher-resources/codeair/unit-1/CodeAIR%20Mission%202%20Assignment.docx
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.pdf
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.docx
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.pdf
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.docx
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-solutions/unit-1/CodeAIR%20Mission%202%20Assignment%20Answers.pdf
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-assessments/unit-1/CodeAIR%20Mission%202%20Review%20Questions.pdf

 Fly with Python ​ ​ ​ ​ ​ ​ .

Comment Code that doesn’t get run; notes in the code about what you are doing.

Module Also known as a library; it contains pre-loaded code, like functions and methods, that
can be used once the module is imported.

New Python Code

from codeair import * Import the codeair library; all built-in code specific to CodeAIR

leds.set(num, brightness)
leds.set(0, 50)

Sets the user LED at a brightness level.
In this example, LED 0 is set to 50 percent brightness

Teacher Notes
●​ The assignment document follows the mission and is a place for guided notes. You can print the

document for the students (PDF) or assign it digitally through your LMS (doc).
●​ If you or your students have trouble running code, follow the CodeAIR Flying Guide. The CodeAIR must be

connected and turned on, even if you are not flying the drone.
●​ Review questions can be used as a class review, made into a Kahoot!, or used to create an exam in your

learning management system.
●​ Extensions and cross-curricular projects are included to enhance the concepts in the mission. You can use

the extensions to extend students’ programming experience. A remix is not explicitly planned, but you can
add one as an option to give students additional learning. A remix is planned after Mission 3.

Extensions
●​ Use the LEDs to display a pattern by either

turning some lights on and keeping some off,
or using different levels of brightness.

●​ Discuss abstraction and how it is used in the
hardware of CodeAIR.

Cross-Curricular
●​ SCIENCE: CodeAIR has several LEDs. Research

what an LED is and how it works.
●​ LANGUAGE ARTS: Write a technical document

that explains the parts of CodeAIR and their
functions.

–6–

 Fly with Python ​ ​ ​ ​ ​ ​ .

Mission 3: Pre-Flight Check Time Frame: 60-90 minutes

Mission Goal: Students will learn how to conduct a
pre-flight check of CodeAIR.

Learning Targets

●​ I can control CodeAIR’s lighting system.
●​ I can program the speaker to add sounds.
●​ I can program the onboard lighting system to

show the colors of the international Aircraft
Position Lighting scheme.

Key Concepts
●​ To slow down computer code, which runs very

quickly, you need a delay. In Python, use a
sleep() function to slow down the action.

●​ You can use editor shortcuts to copy and paste
code.

●​ A loop, like the while True: statement or for
loop, repeats a block of indented code.

●​ CodeAIR has a speaker that produces beeps in
different frequencies and duration.

●​ CodeAIR has 8 pixel LEDs that can light up any
color. They are numbered 0-7.

Assessment Opportunities
●​ Quiz after Objective 2
●​ Quiz after Objective 4
●​ Quiz after Objective 7
●​ Complete the program CycleLEDs
●​ Complete the program Melody
●​ Complete the program SkyLights
●​ Complete the program RunningLights
●​ Mission 3 Assignment
●​ Mission 3 Review questions

Success Criteria
​ Use a loop to repeat a block of indented code
​ Use the speaker to play music
​ Control the pixel LEDs
​ RunningLights works correctly and runs without
errors

​ Complete Mission 3 Assignment

Standards

CSTA Standards Grades 9-10 CSTA Standards Grades 11-12 AI4K12 Standards Grades 9-12

●​ 3A-CS-01
●​ 3A-CS-02
●​ 3A-CS-03
●​ 3A-DA-11
●​ 3A-AP-15
●​ 3A-AP-16
●​ 3A-AP-21

●​ 3B-AP-11
●​ 3B-AP-15
●​ 3B-AP-22
●​ 3B-AP-23

Student Materials
●​ Laptop/computer with Chrome browser
●​ CodeAIR drone and USB cable
●​ CodeAIR Mission 3 Assignment (PDF or doc)
●​ CodeAIR Flying Guide (PDF or doc)

Teacher Resources
●​ CodeAIR Mission 3 Assignment Answers
●​ CodeAIR Mission 3 Review Questions
●​ CodeAIR Flying Guide (PDF or doc)

Vocabulary

Pre-flight Checks Going through a detailed checklist before every flight. The list includes lighting systems,
safety devices, control surfaces, engines and navigation sensors.

Embedded systems
programming

Writing code that goes in a tiny microcontroller embedded in an electronic device.

Sequence Code that runs one line at a time, in order; sequential.

Sleep Controlling the pace of code execution by using a delay timing tool.

–7–

https://learn.firialabs.com/teacher-resources/codeair/unit-1/CodeAIR%20Mission%203%20Assignment.pdf
https://learn.firialabs.com/teacher-resources/codeair/unit-1/CodeAIR%20Mission%203%20Assignment.docx
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.pdf
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.docx
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-solutions/unit-1/CodeAIR%20Mission%203%20Assignment%20Answers.pdf
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-assessments/unit-1/CodeAIR%20Mission%203%20Review%20Questions.pdf
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.pdf
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.docx

 Fly with Python ​ ​ ​ ​ ​ ​ .

While loop A statement that tells Python to repeat a block of code indented beneath it as long as
the given condition is true.

Condition An expression that evaluates to True or False (Boolean).

Infinite loop Repeat a block of code while a condition is always True – doesn’t end.

Constants Named values that don’t change during program execution. Constants are usually
defined at the top of program code, just below imports.

Scientific pitch
notation

A method of specifying musical pitch by combining a musical note name (A-G) and a
number identifying the pitch’s octave (0-9).

RGB color Digital colors made up of (RED, GREEN, BLUE) light. The three colors each have a
brightness from 0-255 to create many colors. The values of each color are stored in a
list or tuple.

Pixel LEDs Multi-colored LEDs that can be controlled by the CPU; also known as NeoPixels.

Range A sequence of numbers you can iterate over. When the range() function is used, the
iteration starts at the first number (or default 0) and stops one integer before the last
number.
seq = range(5) will iterate over 0, 1, 2, 3, and 4.

Iteration (iterating) Repeating, or iterating, through a sequence of some kind. Examples of a sequence are
a range of numbers, a range of colors, a list or a tuple.

For loop A way to perform iteration.

Standard Navigation
Lights

An international standard color scheme to indicate the orientation of the craft. Helpful
for anti-collision. The lights are solid (not flashing) and positioned as follows:

●​ Green for starboard side (right)
●​ Red for port side (left)
●​ White for the backend, or tail

New Python Code

from time import sleep Import the time library to access built-in timing functions like sleep

leds.set(0, 0) Turn off an led; use a brightness of 0

leds.set(0, 50)
sleep(1)
leds.set(0, 0)
sleep(1)

Blink an LED for 1 second intervals.

while True: Infinite loop (instruction ends with a colon (:) and block underneath
is indented)

speaker.beep(frequency, duration)
speaker.beep(440, 200)

Play a note (or sound) using CodeAIR’s speaker
In this example, the frequency is 400 and the duration is 200 ms

D5 = 587 Constant definition

leds.set_status(50) A single LED positioned near the USB connector. The command
needs a single argument for brightness.

–8–

 Fly with Python ​ ​ ​ ​ ​ ​ .

COLOR_LIST = (BLACK, BROWN, RED,
ORANGE, YELLOW, GREEN, BLUE,
PURPLE, GRAY, WHITE, CYAN,
MAGENTA, PINK, LIGHT_GRAY,
DARK_GREEN, DARK_BLUE)

Standard color definitions that are included in the codeair library
from the colors module.

pixels.set(num, color)
pixels.set(0, RED)

Set a pixel LED to a specific color
In this example, pixel 0 is set to RED

pixels.set(0, BLACK) Turn off a pixel LED. Here, color names are in ALL CAPS because
they are included in the pre-defined COLOR_LIST.

for n in range(8): For loop that starts at 0 and goes up to but not including the
ending value. In this example, the iteration would be 0, 1, 2, 3, 4, 5,
6 and 7.

Loop for turning pixels red, then green, then blue.

pixels.set(TOP_FRONT_LEFT, RED) Pixels can be designated with a number or constant for position:
BOTTOM_FRONT_LEFT, BOTTOM_FRONT_RIGHT,
BOTTOM_REAR_LEFT, BOTTOM_REAR_RIGHT,
TOP_FRONT_LEFT, TOP_FRONT_RIGHT, TOP_REAR_RIGHT,
BOTTOM_REAR_RIGHT

pixels.fill(WHITE, brightness=50) Turns all 8 pixels WHITE at brightness 50.
This code is much shorter than turning on all 8 pixels individually.

sleep(1.0)​
pixels.fill(WHITE, brightness=50)​
sleep(0.02)

Strobe

Teacher Notes
●​ The assignment document follows the mission and is a place for guided notes. You can print the

document for the students (PDF) or assign it digitally through your LMS (doc).
●​ If you or your students have trouble running code, follow the CodeAIR Flying Guide. The CodeAIR must be

connected and turned on, even if you are not flying the drone.
●​ Review questions can be used as a class review, made into a Kahoot!, or used to create an exam in your

learning management system.
●​ Extensions and cross-curricular projects are included to enhance the concepts in the mission. You can use

the extensions to extend students’ programming experience. A remix is not explicitly planned, but you can
add one as an option to give students additional learning. A remix is planned after Mission 3.

Extensions
●​ Use the LEDs and pixel LEDs to display a light

show. Add music.
●​ Discuss abstraction and how it is used in the

hardware of CodeAIR.
●​ Have students do a code review. In the code

review, students should select a loop to
evaluate and discuss the efficiency,
correctness and clarity of the loop.

Cross-Curricular
●​ SCIENCE: Pixel LEDs use red, green and blue

lights to make colors. Research how light produces
color.

●​ MATH: Use math skills to plan a light show with
specific timing: how long to sleep, and how long to
display the lights.

●​ LANGUAGE ARTS: Compare and contrast the
different types of loops.

–9–

 Fly with Python ​ ​ ​ ​ ​ ​ .

Unit 1 Remix Project Time Frame: 2-3 hours

Remix Project Goal: Students will use the skills and
concepts they learned in Missions 1, 2 and 3 to create
their own project.

Remix Project Outline: Follow the five-steps of the
design process to design a remix project (see Remix 1
Project Planning Guide).

Remix 1 Project Assessment Opportunities
●​ Remix 1 Project Planning Guide
●​ Peer reviews / Gallery walk
●​ Remix 1 Project Rubric and/or Checklist
●​ Submit Remix 1 Program

Mission 1, 2, and 3 Summative Assessment
●​ Unit 1 Review Questions
●​ Mission 1 Review Questions
●​ Mission 2 Review Questions
●​ Mission 3 Review Questions

Supplementary Materials (available at learn.firialabs.com)
●​ Unit 1 Remix Project Slides (slides)
●​ Unit 1 Remix Project Planning Guide – includes space for 2 peer reviews (PDF and doc)
●​ Optional: Peer Review Form (PDF and doc)
●​ CodeAIR Remix Mastery Rubric (PDF and doc)
●​ CodeAIR Remix Standards Rubric (PDF and doc)

CSTA Standards
The Unit 1 Remix Project covers the standards for Mission 2 and Mission 3. In addition, the remix gives students an
opportunity to work collaboratively in a team. These additional standards are met when students work
collaboratively in teams and incorporate feedback from users.

●​ 3A-AP-19: Systematically design and develop programs for broad audiences by incorporating feedback from users.
●​ 3A-AP-22: Design and develop computational artifacts working in team roles using collaborative tools.
●​ 3A-AP-23: Document design decisions using text, graphics, presentations, and/or demonstrations in the development

of complex programs.
●​ 3B-AP-17: Plan and develop programs for broad audiences using a software life cycle process.
●​ 3B-AP-20: Use version control systems, integrated development environments (IDEs), and collaborative tools and

practices (code documentation) in a group software project.

Teacher Notes
●​ The slides can be used to introduce the remix

project and give students ideas for their own
project.

●​ The planning guide can be printed for each
team (PDF) or given digitally (DOC).

●​ You can use the checklist or a rubric for
assessment. They can all be modified to fit your
needs and expectations.

●​ You can modify the rubric checklist if there are
things you don’t want to require, or if there are
other requirements you want to add.

●​ Two rubrics are provided. Both may include
standards or requirements that are not covered
in Unit 1. You can modify the rubrics as needed.

Unit 1 Remix Project Rubric Checklist
​ New file is used and filename is descriptive
​ Define and use a constant
​ Define and use a variable
​ Turns on at least one blue LED
​ Turns on at least one pixel LED
​ Uses a sleep delay one or more times
​ Uses a while loop
​ Uses a for loop
​ Plays at least two notes using the speaker
​ Is different from required programs
​ Includes comments and whitespace for
readability

​ Code runs with no errors

–10–

https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-assessments/unit-1/Unit%201%20Review%20Questions.pdf
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-assessments/unit-1/CodeAIR%20Mission%201%20Review%20Questions.pdf
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-assessments/unit-1/CodeAIR%20Mission%202%20Review%20Questions.pdf
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-assessments/unit-1/CodeAIR%20Mission%203%20Review%20Questions.pdf
https://learn.firialabs.com/curricula/lift-off-with-codex/teachers-resources/lift-off-teacher-materials
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/CodeAIR%20Unit%201%20Remix%20Project%20Slides.pptx
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/CodeAIR%20Unit%201%20Remix%20Project%20Planning%20Guide%20PDF.pdf
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/CodeAIR%20Unit%201%20Remix%20Project%20Planning%20Guide%20DOC.docx
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/Peer%20Review%20Form.pdf
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/Peer%20Review%20Form.docx
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/CodeAIR%20Remix%20Mastery%20Rubric.pdf
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/CodeAIR%20Remix%20Mastery%20Rubric.docx
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/CodeAIR%20Remix%20Standards%20Rubric.pdf
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/CodeAIR%20Remix%20Standards%20Rubric.docx

 Fly with Python ​ ​ ​ ​ ​ ​ .

Mission 4: Flight Safety Time Frame: 60-90 minutes

Mission Goal: Students will program a set of safety
procedures that can be used in future drone flights.

Learning Targets

●​ I can write code to arm the drone for take-off.
●​ I can write code for a warning indicator.
●​ I can understand the quadcopter power system.

Key Concepts
●​ Safety procedures can ensure the user is safe

before a drone take-off.
●​ CodeAIR has two input buttons.
●​ An if and elif statements allow a branch of

indented code to run, based on a condition.
●​ The break statement stops a loop.
●​ Buttons can accidentally record two presses.

Code to “debounce” a button is necessary.
●​ Create a function for code you want to reuse.

Assessment Opportunities
●​ Quiz after Objective 2
●​ Quiz after Objective 5
●​ Complete the program safety.py
●​ Mission 4 Assignment
●​ Mission 4 Review questions

Success Criteria
​ Use an if statement and break statement to stop
a loop when a button is pressed

​ Use code to “debounce” button presses
​ Create a user-defined function
​ safety.py works correctly and runs without errors
​ Complete Mission 4 Assignment

Standards

CSTA Standards Grades 9-10 CSTA Standards Grades 11-12 AI4K12 Standards Grades 9-12

●​ 3A-CS-03
●​ 3A-DA-11
●​ 3A-AP-13
●​ 3A-AP-16
●​ 3A-AP-17
●​ 3A-AP-21

●​ 3B-NI-04
●​ 3B-AP-08
●​ 3B-AP-14
●​ 3B-AP-15
●​ 3B-AP-22
●​ 3B-AP-23

Student Materials
●​ Laptop/computer with Chrome browser
●​ CodeAIR drone and USB cable
●​ CodeAIR Mission 4 Assignment (PDF or doc)
●​ CodeAIR Flying Guide (PDF or doc)

Teacher Resources
●​ CodeAIR Mission 4 Assignment Answers
●​ CodeAIR Mission 4 Review Questions
●​ CodeAIR Flying Guide (PDF or doc)

Vocabulary

Quadcopter Safety
Guidelines

Steps to take to ensure personal safety when working with a drone. They include
wearing protective gear, avoiding contact with moving parts, and operating in a clear
area.

Safety interlock A safety measure that prevents an electronic device from starting until an event is
triggered, like a button press.

UX User experience; it encompasses the navigation of a product and how easy to use it is.

Branching ‘if’
statement

A programming control structure that lets code do something different if a certain
condition happens, like a button press. This is different from sequential or iteration.

Bounce When the metal contacts of an electronic input peripheral like a button bounce a few
times before coming to a rest. This problem could mean a peripheral is read more than
once.

–11–

https://learn.firialabs.com/teacher-resources/codeair/unit-2/CodeAIR%20Mission%204%20Assignment.pdf
https://learn.firialabs.com/teacher-resources/codeair/unit-2/CodeAIR%20Mission%204%20Assignment.docx
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.pdf
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.docx
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-solutions/unit-2/CodeAIR%20Mission%204%20Assignment%20Answers.pdf
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-assessments/unit-2/CodeAIR%20Mission%204%20Review%20Questions.pdf
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.pdf
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.docx

 Fly with Python ​ ​ ​ ​ ​ ​ .

Function Reusable code with a name. Making reusable components is a major goal of software
engineering. Once a button is defined, it must be called before the code is executed.

Variable A named value used in code, like a box with a label. Use the variable name instead of
the value. A value can be any data type, including a number, a string (text) or a Boolean.

Torque Rotational force produced by motors. When torque is produced, there is a naturally
occurring force in the opposite direction.

New Python Code

buttons.was_pressed(BTN_0) Checks to see if B0 was pressed since the last check.

break Breaks out of the nearest enclosing loop

if buttons.was_pressed(BTN_0):​
 break

If statement (branching) that checks for a button press. ​
buttons.was_pressed(BTN_0) is either True or False.

while True:​
 if buttons.was_pressed(BTN_0):​
 break

If statement in an infinite loop. The code waits for a button press
before moving to the next line of code.

pixels.fill(YELLOW) Sets all 8 pixels to YELLOW (built-in color)

pixels.off() Turn off all 8 pixels

sleep(0.1)​
buttons.was_pressed()

Debounce the buttons.
This line of code resets both buttons!

from flight import * Imports the flight module so you can use built-in functions, like
motor_test()

motor_test(True)
motor_test(False)

Start / stop a motor test that spins the motors but not fast
enough to lift off.

def button_arm(): Function definition. The indented block below is the code of the
function. A function definition always has () for parameters, even
if none are given.

return do_launch Returns (sends) data from the function back to the code that
called it. A return ends the function.

if button_arm(): Call the function button_arm(), which returns a True or False
value

set_param(‘motorPowerSet.m2’, 30000) Set motor (m2) power (30000)

set_param(‘motorPowerSet.enable’, 1) Enable power to the motors

set_param(‘motorPowerSet.enable’, 0) Disable power to the motors

Teacher Notes
●​ The hints in Objective 1 give suggestions for troubleshooting programming errors, and also for using Chat

GPT to understand code. You may want to review the hints with students.
●​ The assignment document follows the mission and is a place for guided notes. You can print the

document for the students (PDF) or assign it digitally through your LMS (doc).

–12–

 Fly with Python ​ ​ ​ ​ ​ ​ .

●​ If you or your students have trouble running code, follow the CodeAIR Flying Guide. The CodeAIR must be
connected and turned on, even if you are not flying the drone.

●​ The buttons to press are very tiny and can be hard to see. They are located just next to the first and last
blue LEDs. The blinking lights help identify which button to press in the correct order.

●​ Review questions can be used as a class review, made into a Kahoot!, or used to create an exam in your
learning management system.

●​ Extensions and cross-curricular projects are included to enhance the concepts in the mission. You can use
the extensions to extend students’ programming experience. A remix is planned after Mission 5.

Extensions
●​ Have students use ChatGPT to annotate a

section of their code. Then have students do
their own annotation of a different section of
code.

●​ Have students do a code review. They should
go through the button_arm() function and
describe what each section does.

Cross-Curricular
●​ SCIENCE: The mission discusses torque and

Newton’s 3rd Law. Study these topics in more
depth.

●​ LANGUAGE ARTS: After using Chat GPT to
annotate a section of code, write a paragraph that
describes how artificial intelligence drives many
software and physical systems.

●​ LANGUAGE ARTS: Make a list of troubleshooting
strategies used to identify and fix errors.

–13–

 Fly with Python ​ ​ ​ ​ ​ ​ .

Mission 5: Hovering Flight Time Frame: 90-180 minutes

Mission Goal: Students will program CodeAIR to
avoid walls and seek an exit by utilizing its sensors.

Learning Targets

●​ I can use the console output print() statement.
●​ I can control CodeAIR with the

MotionCommander interface.
●​ I can use blocking and non-blocking functions.
●​ I can measure distances with CodeAIR’s laser

rangers.
●​ I can work with variables in Python.

Key Concepts
●​ You can save important functions as a custom

module. Then import and use the module in
future programs.

●​ CodeAIR uses a high-level flight control
interface called MotionCommander that uses
sensors to maintain stable flight.

●​ Functions can be blocking or non-blocking.
●​ When it is connected to CodeSpace, CodeAIR

can print information to the console.
●​ A variable is a name you attach to an object so

your code can work with it.
●​ You can use a variable to give your code

memory. Update the variable to use it as a
counter.

Assessment Opportunities
●​ Quiz after Objective 5
●​ Quiz after Objective 7
●​ Quiz after Objective 9
●​ Save safety.py as a custom module
●​ Complete the program Hover
●​ Complete the program Rangers
●​ Complete the program Ceiling
●​ Complete the program Theremin
●​ Complete the program HallMonitor
●​ Complete the program Avoidance
●​ Mission 5 Assignment
●​ Mission 5 Review questions

Success Criteria
​ Create the safety.py custom module
​ Use MotionCommander commands to fly
​ Read sensors and unpack their values into
variables

​ Use the CodeAIR and variables as a people
counter

​ Use the blue LEDs as counters
​ Avoidance works correctly and runs without
errors or bugs

​ Complete Mission 5 Assignment

Standards

CSTA Standards Grades 9-10 CSTA Standards Grades 11-12 AI4K12 Standards Grades 9-12

●​ 3A-CS-03
●​ 3A-DA-11
●​ 3A-AP-13
●​ 3A-AP-15
●​ 3A-AP-16
●​ 3A-AP-17
●​ 3A-AP-18
●​ 3A-AP-21
●​ 3A-IC-24
●​ 3A-IC-26

●​ 3B-DA-06
●​ 3B-AP-10
●​ 3B-AP-14
●​ 3B-AP-15
●​ 3B-AP-16
●​ 3B-AP-21
●​ 3B-AP-22
●​ 3B-AP-23

●​ 1-A-ii

Student Materials
●​ Laptop/computer with Chrome browser
●​ CodeAIR drone and USB cable
●​ Poster board or similar material to use as a “wall”
●​ CodeAIR Mission 5 Assignment (PDF or doc)
●​ CodeAIR Flying Guide (PDF or doc)

Teacher Resources
●​ CodeAIR Mission 5 Assignment Answers
●​ CodeAIR Mission 5 Review Questions
●​ CodeAIR Flying Guide (PDF or doc)

–14–

https://learn.firialabs.com/teacher-resources/codeair/unit-2/CodeAIR%20Mission%205%20Assignment.pdf
https://learn.firialabs.com/teacher-resources/codeair/unit-2/CodeAIR%20Mission%205%20Assignment.docx
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.pdf
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.docx
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-solutions/unit-2/CodeAIR%20Mission%205%20Assignment%20Answers.pdf
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-assessments/unit-2/CodeAIR%20Mission%205%20Review%20Questions.pdf
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.pdf
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.docx

 Fly with Python ​ ​ ​ ​ ​ ​ .

Vocabulary

Module An external source of code that is outside your own source file; also known as a library.

Custom module Some code that is in the same folder as your program and can be accessed by
importing it.

docstring A documentation string; a comment at the top of the file that explains what it does. Use
triple quotes (‘’’ or “””) to start and stop a docstring.

Console A window that lets you see output from print() statements.

Blocking function A function that runs one line at a time, blocking your code from continuing until they are
finished. Examples: steady() and sleep()

Non-Blocking
function

A function that starts a movement, then returns to the code. Another command must be
sent to change or stop the movement.

OODA loop “Observe, orient, decide, act” – a continuous loop run by the CPU to keep the drone
flying at a desired altitude.

Variable A name attached to an object so your code can work with it. The object can be any
data: a number, text, tuple, etc.

Tuple Ranger data – a set of three values indicated with parenthesis (forward, up, down).

Polling Repeatedly checking something to see if anything has changed.

Actuator A device that receives signals and responds with a specific action. When flying a drone,
the motors are actuators that receive input from sensors.

Updating a variable Changing the value of a variable with assignment. An example is to increment a count
by 1.

Dead reckoning A type of navigation that calculates the vehicle’s position based on its known starting
point, speed, direction and elapsed time.

Sensor-based
navigation

A type of navigation that is adaptive, relying on real-time data gathered by sensors to
detect obstacles and adjust course accordingly.

REPL Repeat evaluate print loop; using the console to interactively enter commands and view
outputs in a text format.

New Python Code

‘’’This is a docstring’’’ Document string that should go at the top of any module

fly.take_off(height_meters) Ascend to given height altitude

fly.steady(seconds) Hover, allows code to pause while keeping the flight controller
running

fly.land() Descend to the floor

fly.forward(distance, velocity) Distance in meters, velocity in meters per second (defaults to 0.2)

fly.back(distance, velocity) Distance in meters, velocity in meters per second (defaults to 0.2)

–15–

 Fly with Python ​ ​ ​ ​ ​ ​ .

fly.left(distance, velocity) Distance in meters, velocity in meters per second (defaults to 0.2)

fly.right(distance, velocity) Distance in meters, velocity in meters per second (defaults to 0.2)

fly.up(distance, velocity) Distance in meters, velocity in meters per second (defaults to 0.2)

fly.down(distance, velocity) Distance in meters, velocity in meters per second (defaults to 0.2)

get_data(RANGERS) Returns the (forward, up, down) distance in millimeters

if up < too_close:
 # sound alarm

If statement with a condition

fwd, up, down = get_data(RANGERS) Unpack the data from the rangers from the three values in the
tuple to three variables

Algorithm for polling with a blocking function.
In this example, timeout is a parameter that receives seconds from
an argument. The polling will happen ten times per second.

speaker.beep(400, 0) Causes the beep to play continuously. Requires speaker.off() to
stop the beep.

count = count + 1 Incrementing or updating a variable

leds.set_mask(0, 0) Turn off all the blue LEDs

fly.start_forward() Non-blocking function that starts moving forward at the default
velocity and returns immediately so the next instruction can be
executed

fly.stop() Stop any motion and hover

fly.turn_left(degrees) A blocking function that turns the drone degrees left

if count == 8: Checks if count is the same as 8. If it is, a branch of code is
executed.

Teacher Notes
●​ This mission is lengthy and includes several programs and concepts. Take your time, even an entire week.

Using several days for the Objectives will give your students plenty of time to explore and try things.
●​ In Objective #1, students add code to their custom module. The __name__ and ‘__main__’ use two

underscores _ _. You may need to mention this to students to avoid errors.
●​ The floor space and lighting really do make a difference in how well CodeAIR can track its movements. If

you have a lot of drift, move to different flooring or add a pattern to the floor to help with navigation.
●​ In Objective #6, think safety first! Use a file folder or clipboard as an obstacle above the drone instead of a

hand. You don’t want fingers in the blades.
●​ The CodeTrek in Objective #8 shows a step-by-step algorithm for counting people. This mission uses

several algorithms. This is a good time to have a discussion about algorithms and practice writing them.
●​ Extensions and cross-curricular projects are included to enhance the concepts in the mission. You can use

the extensions to extend students’ programming experience. A remix is planned after Mission 5.

–16–

 Fly with Python ​ ​ ​ ​ ​ ​ .

Extensions
●​ Create a more elaborate security system after

Objective 5 and/or Objective 6.
●​ Code a different ending to fix the bug after

Objective 10.
●​ Have students do a code review. Pick any of

the six programs to review.
●​ The programs in this mission use algorithms to

solve a problem. Discuss what an algorithm is.
Practice writing algorithms.

Cross-Curricular
●​ MATH: In Objective #3 the drone flies forward a

given distance. Create a chart of distances entered
in code and actual distance flown. Calculate the
difference. Write an equation to predict future
flights.

●​ SCIENCE: The theremin was invented during
research into proximity sensors. Study the physics
involved in the musical instrument. Try building
and playing your own theremin.

●​ LANGUAGE ARTS: Write a paragraph that explains
when to use a loop and when to use an if
statement in code.

●​ LANGUAGE ARTS: Evaluate the ways computing
impacts personal or cultural practices.

●​ LANGUAGE ARTS: Make a list of troubleshooting
strategies used to identify and fix errors.

–17–

 Fly with Python ​ ​ ​ ​ ​ ​ .

Unit 2 Remix Project Time Frame: 2-3 hours

Remix Project Goal: Students will use the skills and
concepts they learned in Missions 4 and 5 to create
their own project.

Remix Project Outline: Follow the five-steps of the
design process to design a remix project (see Remix 2
Project Planning Guide).

Remix 2 Project Assessment Opportunities
●​ Remix 2 Project Planning Guide
●​ Peer reviews / Gallery walk
●​ Remix 2 Project Rubric and/or Checklist
●​ Submit Remix 2 Program

Unit 2 Summative Assessment
●​ Unit 2 Review Questions
●​ Mission 4 Review Questions
●​ Mission 5 Review Questions

Supplementary Materials (available at learn.firialabs.com)
●​ Unit 2 Remix Project Slides (slides)
●​ Unit 2 Remix Project Planning Guide – includes space for 2 peer reviews (PDF and doc)
●​ Optional: Peer Review Form (PDF and doc)
●​ CodeAIR Remix Mastery Rubric (PDF and doc)
●​ CodeAIR Remix Standards Rubric (PDF and doc)

CSTA Standards
The Unit 2 Remix Project covers the standards for Mission 4 and Mission 5. In addition, the remix gives students an
opportunity to work collaboratively in a team. These additional standards are met when students work
collaboratively in teams and incorporate feedback from users.

●​ 3A-AP-19: Systematically design and develop programs for broad audiences by incorporating feedback from users.
●​ 3A-AP-22: Design and develop computational artifacts working in team roles using collaborative tools.
●​ 3A-AP-23: Document design decisions using text, graphics, presentations, and/or demonstrations in the development

of complex programs.
●​ 3B-AP-17: Plan and develop programs for broad audiences using a software life cycle process.
●​ 3B-AP-20: Use version control systems, integrated development environments (IDEs), and collaborative tools and

practices (code documentation) in a group software project.

Teacher Notes
●​ The slides can be used to introduce the remix

project and give students ideas for their own
project.

●​ The planning guide can be printed for each
team (PDF) or given digitally (DOC).

●​ You can use the checklist or a rubric for
assessment. They can all be modified to fit your
needs and expectations.

●​ You can modify the rubric checklist if there are
things you don’t want to require, or if there are
other requirements you want to add.

●​ Two rubrics are provided. Both may include
standards or requirements that are not covered
in Unit 1. You can modify the rubrics as needed.

Unit 2 Remix Project Rubric Checklist
​ New file is used and filename is descriptive
​ Use at least one variable
​ Turns on at least one blue LED
​ Turns on at least one pixel LED
​ Uses at least one loop
​ Uses at least one if statement
​ Moves the drone using flying statements
​ Uses data from at least one sensor
​ Has a purpose and is different from required
programs

​ Includes comments and whitespace for
readability

​ Code runs with no errors

–18–

https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-assessments/unit-2/Unit%202%20Review%20Questions.pdf
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-assessments/unit-2/CodeAIR%20Mission%204%20Review%20Questions.pdf
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-assessments/unit-2/CodeAIR%20Mission%205%20Review%20Questions.pdf
https://learn.firialabs.com/curricula/lift-off-with-codex/teachers-resources/lift-off-teacher-materials
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/CodeAIR%20Unit%202%20Remix%20Project%20Slides.pptx
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/CodeAIR%20Unit%202%20Remix%20Project%20Planning%20Guide%20PDF.pdf
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/CodeAIR%20Unit%202%20Remix%20Project%20Planning%20Guide%20DOC.docx
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/Peer%20Review%20Form.pdf
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/Peer%20Review%20Form.docx
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/CodeAIR%20Remix%20Mastery%20Rubric.pdf
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/CodeAIR%20Remix%20Mastery%20Rubric.docx
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/CodeAIR%20Remix%20Standards%20Rubric.pdf
https://learn.firialabs.com/teacher-resources/codeair/codeair-remix/CodeAIR%20Remix%20Standards%20Rubric.docx

 Fly with Python ​ ​ ​ ​ ​ ​ .

Mission 6: Navigate Time Frame: 120-180 minutes

Mission Goal: Students will program CodeAIR to fly
autonomously using sensor data.

Learning Targets

●​ I can explore positioning systems with the flow
sensor for x, y tracking.

●​ I can observe and analyze flow sensor accuracy
by flying CodeAIR in a square.

●​ I can conduct a battery check to ensure safe and
sustained flight.

●​ I can customize selectable operations to control
code behavior during runtime.

●​ I can experiment with flight parameters including
height, distance and velocity.

Key Concepts
●​ The flow sensor is an optical device that can

discern patterns on the ground and report
movement in two directions.

●​ The sensor tracks motion by summing up the
changes in x and y over time.

●​ You can use an f-string to determine how
information is printed.

●​ Data from multiple sensors is needed for
accurate flight control.

●​ CodeAIR’s battery is charging whenever it is
plugged in.

●​ The 8 LEDs can use binary patterns to display
integers between 0 and 255.

●​ Handle exceptions in code using a try block.

Assessment Opportunities
●​ Quiz after Objective 2
●​ Quiz after Objective 4
●​ Quiz after Objective 6
●​ Complete the program FlowTracker
●​ Complete the program SquareUp
●​ Complete the program SquareTurns
●​ Complete the program BattTest
●​ Complete the program utility.py
●​ Complete the program RouteSelect
●​ Mission 6 Assignment
●​ Mission 6 Review questions

Success Criteria
​ Use flow sensor data to track position
​ Fly CodeAIR in a square
​ Perform a battery check
​ Create a user interface using binary patterns
​ Handle exceptions using a try block
​ RouteSelect works correctly and runs without
errors or bugs

​ Complete Mission 6 Assignment

Standards

CSTA Standards Grades 9-10 CSTA Standards Grades 11-12 AI4K12 Standards Grades 9-12

●​ 3A-CS-01
●​ 3A-CS-03
●​ 3A-DA-09
●​ 3A-AP-13
●​ 3A-AP-14
●​ 3A-AP-16
●​ 3A-AP-17
●​ 3A-AP-18
●​ 3A-AP-21
●​ 3A-IC-26

●​ 3B-CS-02
●​ 3B-DA-06
●​ 3B-DA-07
●​ 3B-AP-10
●​ 3B-AP-14
●​ 3B-AP-15
●​ 3B-AP-16
●​ 3B-AP-21
●​ 3B-AP-22
●​ 3B-AP-23

●​ 1-A-ii
●​ 1-B-i
●​ 1-C-ii

Student Materials
●​ Laptop/computer with Chrome browser
●​ CodeAIR drone and USB cable
●​ Metric tap measure or ruler
●​ CodeAIR Mission 6 Assignment (PDF or doc)
●​ Optional: Mission 6 Flight Data (spreadsheet)
●​ CodeAIR Flying Guide (PDF or doc)

Teacher Resources
●​ CodeAIR Mission 6 Assignment Answers
●​ CodeAIR Mission 6 Review Questions
●​ CodeAIR Flying Guide (PDF or doc)

–19–

https://learn.firialabs.com/teacher-resources/codeair/unit-2/CodeAIR%20Mission%206%20Assignment.pdf
https://learn.firialabs.com/teacher-resources/codeair/unit-2/CodeAIR%20Mission%206%20Assignment.docx
https://learn.firialabs.com/teacher-resources/codeair/unit-2/CodeAIR%20Mission%206%20flight%20data.xlsx
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.pdf
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.docx
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-solutions/unit-2/CodeAIR%20Mission%206%20Assignment%20Answers.pdf
https://learn.firialabs.com/teacher-resources/licensed/codeair-licensed/codeair-assessments/unit-2/CodeAIR%20Mission%206%20Review%20Questions.pdf
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.pdf
https://learn.firialabs.com/teacher-resources/codeair/CodeAIR%20Flying%20Guide.docx

 Fly with Python ​ ​ ​ ​ ​ ​ .

Vocabulary

Positioning systems A system for determining the position of an object in space.

Flow sensor A sensor used to track horizontal movement across a surface; essential for stable hover
and precise navigation.

Delta A change in position, symbol from the Greek letter Δ and used in math and science to
represent change.

String A data type that is a sequence of characters all strung together. Can be numbers,
letters, spaces, whatever!

Format string A template for printing a string using replacement fields that are designated with {curly
braces}. This allows actual arguments to be inserted into the template.

MotionCommander
Interface

An interface between Python code and the flight controller that provides a high-level
flight control interface and uses onboard sensors to maintain stability.

Sensor fusion When data from multiple sensors is combined. For example, combining altitude data
from the laser ranger with the data from the flow sensor.

Under load When a battery is powering peripherals, like CodeAIR’s motors, it is under load.

Binary numbers How computers deal with digits. Two states (on and off) are represented with 1 and 0.

Bit A single binary digit (1 or 0)

Byte An 8-bit number

Selectable
operations UI

A user interface that uses one button to scroll through a menu and another button to
confirm the current selection, and then start the action.

Exceptions Errors that might happen during your program execution.

External positioning
system

A positioning system that uses something outside the drone to determine location, such
as GPS or a fixed-location beacon.

New Python Code

dx, dy = get_data(FLOW) Read data from the flow sensor; returns the change in x direction
and change in y direction

print(x, y) A simple print statement that converts data to strings and displays
them on the console

print(“Flow Sensor Output”) Print a string text on the console

print(f”x={x}, y={y}”) F-string with replacement fields in curly braces

abs(x) Returns the absolute value of x

vbatt = power.battery_voltage(10) Read battery voltage, average 10 samples

amps = power.charger_current() Read charging current when connected with USB

usb_connected = power.is_usb() Returns True if currently powered by USB

–20–

 Fly with Python ​ ​ ​ ​ ​ ​ .

value = 0b1001 Set the value to 9 using binary

leds.set_mask(255, 50) Set BYTE LEDs to 255 (on) with brightness = 50

leds.set_mask(0b10101010, 50) Set BYTE LEDs using binary

If __name__ == ‘__main__’: Detects when this program is being run as the “main program”
instead of an import

try: A block of code that executes when no error occurs, or until an
error occurs.

except: A block of code that lets your program respond to an error without
crashing.

Teacher Notes
●​ The last objective requires students to create a chart and log the results of several test flights. The

assignment document has a chart they can use. Alternatively, students can use a spreadsheet (one is
provided) and use the spreadsheet for more extensive data analysis.

●​ This mission involves several programs, and each one can be used for experimentation. Don’t rush, and
give students plenty of time to try their code with different values and in different environments. You could
easily spend a class period on almost every single objective.

●​ Objective #4 has some important instructions after the goal is met. Students need to add their battery
check to safety.py and then run the code to reinstall it on CodeAIR. Don’t let students skip this part!

●​ The test flights during the Objectives will need plenty of unobstructed room. Clear out as much furniture
as you can, or use hallways. Also check the flooring. Use flooring with a pattern for best results.

●​ Extensions and cross-curricular projects are included to enhance the concepts in the mission. You can use
the extensions to extend students’ programming experience. A remix is planned after Mission 7.

Extensions
●​ Fly the drone in a different shape: triangle,

hexagon, etc.
●​ Create a more elaborate battery check that

shows the charging amp when plugged in or
the battery charge when disconnected.

●​ Have students do a code review. Pick any of
the six programs to review.

●​ Write algorithms for the functions, or explain
what each line of code does. Discuss
parameters and arguments.

Cross-Curricular
●​ MATH: The code uses built-in math functions like

abs() and min(). Discuss other built-in math
functions that could be used in code. Practice
using them in practical problems.

●​ MATH: Objective #5 introduces binary numbers.
Practice converting binary and decimal numbers.
Explore other number systems besides decimal
and binary.

●​ MATH: Several objectives involve testing the
drone’s flight capabilities. The last objective uses a
chart to document the tests. Do an in-depth
analysis of the data. Create charts for other
objectives and analyze the data.

●​ LANGUAGE ARTS: Make a list of troubleshooting
strategies used to identify and fix errors.

–21–

 Fly with Python ​ ​ ​ ​ ​ ​ .

Appendix A: Required Resources

Computer Resources

Each student will need:

●​ A computer with the Chrome web browser.
●​ Chromebooks work great – just make sure they are up to date.
●​ Windows 10 or Windows 11 will work with no additional drivers needed.
●​ A current Mac OS will also work with no additional drivers needed.
●​ A USB port is used to connect and program the CodeAIR. The CodeAIR comes with a USB to USB-C cable. If

your laptop or computer has any other configuration, you will need a cable that has USB-C on one end.

Software Resources

●​ The interactive textbook and text editor is web-based. Make sure the website is not blocked.
●​ An email is required for signing in and saving work. It can be a gmail account, but any email will work.
●​ A per device license is needed to access the curriculum.

Physical Resources

The missions can be completed by individual students or student pairs utilizing pair programming. Each student or
student pair will still need a CodeAIR and license for the curriculum.

●​ CodeAIR comes with one USB to USB-C connecting cable.
●​ Materials needed but not included:

○​ Poster board or something to simulate a “wall” to enclose the CodeAIR
○​ A meter stick or tape measure for determining distance in meters

Notes

●​ To run code, even if the drone is not flying, CodeAIR needs to be connected to the computer and turned on.
●​ When the CodeAIR is plugged into a computer, it will appear as a USB mass storage device, similar to a flash

drive. This is not required for normal classroom use. So don’t worry if your school has a policy preventing
flash drives. You just close the pop-up window and continue.

●​ Occasionally Firia Labs will provide a software update that requires updating the core software on the
CodeAIR. At those times you will need the flash drive feature to update the software, so you will need to use
a computer with USB drive access. Often a teacher’s computer is used to update all the CodeAIR.

–22–

 Fly with Python ​ ​ ​ ​ ​ ​ .

Appendix B: Our Approach

Physical Computing and CodeSpace: a web-based professional-learning platform

Hardware brings code to life! Our versatile physical computing devices and peripherals get students excited
about code. Our CodeSpace learning environment enables them to step up to computer science with
real-world text-based Python coding. We include ready-to-teach standards-aligned curriculum with hands-on
projects that motivate students.

While there are some great online coding educational programs, we think our approach helps reach a
broader range of students. Our approach:

●​ Gets students focused “off-screen,” programming with physical hardware that connects and interacts
independently of their computers.

●​ Teaches a real, professional programming language. Even younger students appreciate that you can
make real money with these exact skills. If they can read, and they can type, they can code in
text-based Python.

●​ Gives students the tools to create anything they can imagine. Beyond projects and curriculum, we
give students a full-fledged software development environment. These are professional-strength
tools for writing code. Instead of a game-playing environment, students can “win with code” through
engaging hands-on projects and their own creativity.

Project Based Motivation

Students may wonder why they are learning to code. We all find that knowledge tastes so much better when
you’re hungry for it! Our goal is to motivate students with tangible, challenging and practical projects…that
just so happen to require coding to build. We want students to think about how they might code a given
project using what they already know. Only then do we teach just enough coding concepts to help them get
the job done. This approach gives reason and meaning to each concept, as well as relevant problem
context, which helps them retain it.

Type it In

Students are often tempted to just copy and paste from lesson examples. Prior to our extensive testing of the
curriculum on groups of 4th through 12th grade students, we were concerned that the typing burden might
be a problem. But we were willing to risk it.

●​ Typing in the code forces focus, dramatically improving retention.
●​ Keyboarding proficiency is key to expressiveness in using a programming language.
●​ Mistakes in structure, grammar, punctuation, capitalization, etc. are priceless learning opportunities.

Students learn an incredible amount from their mistakes. Our goal is to provide awesome safety-nets for
them, guiding them to iterate quickly through successive failed attempts to arrive at a working solution.
Extensive classroom observation has convinced us that the typing burden is not a problem. Students dive
right in, and they don’t have to be speed typists to make great progress in coding.

Exploration and Creativity

One of the great things about coding is the expressiveness it affords. Coding is a craft that takes time to
master, but with only a few basic tools you can start crafting some pretty amazing things! Before they even
complete the first project, some of your students will probably be experimenting “off-script” with some ideas
of their own. That’s a good thing! In every lesson we list some ideas for re-mixing each project’s concepts.
Remember that students are learning programming skills they can use to build any application – from
controlling a rocketship to choreographing dance moves. Nurture creativity, explore, and instill the joy of
coding!

–23–

 Fly with Python ​ ​ ​ ​ ​ ​ .

Appendix C: Teacher Resources

If you and your students are still fairly new to text-based coding, don’t worry! Like other physical devices and their
curriculum, we’ve designed the Fly with Python Mission Pack and this curriculum guide to gently guide you from
absolute beginner to a very comfortable level of proficiency. Remember this – Don’t Panic 🙂

We understand that tackling a subject like Computer Coding can be pretty intimidating. Fear not, we’ve built some
amazing tools to help you! As you begin this journey, know that the team at Firia Labs is here to help, too. If you run
into any problems, just let us know and we’ll get you back on track.

Classroom Preparation

Writing code can be like literary writing. Like developing writing skills requires individual practice, learning to
code requires students to compose and test their work individually. They need to make their own mistakes
and struggle through correcting them.

There is also a place for pair programming and collaboration in the coding classroom. Such practices foster
knowledge sharing, collective code ownership and code review “on the go”. It also gives students a chance
to communicate about what they are learning and reflect on their practices. It builds confidence and keeps
students focused on the task. Pair programming can result in better quality work with less errors, and keeps
teams “in the flow”.

You may need to think about a balance between independent work and pair programming to give your
students the best opportunities to succeed and truly engage in and enjoy programming.

Daily Routine

We recommend students work for at least 30 minutes each programming session. Adjust accordingly to your
day. Because of the time it takes to set up equipment, log in to computers, and then collect equipment at the
end of the learning period, it may take more time than you anticipate. Each lesson has a suggested time
frame. This range accounts for completing the basics to continuing with cross-curricular lessons or
extensions. Some missions may go even longer, depending on the time you have to spend in coding, the
length of time for each mission, the abilities of your students, etc.

This mission pack has a lot of flexibility built-in. You should complete each mission in order, but the amount of
time spent on each mission is up to you. A pacing calendar is provided, but it offers just a suggestion of the
time you can spend on each mission and objective. We encourage you to take your time with each objective
and not rush. Give students time to explore and investigate; it is all learning!

Remixing and Extensions

Naturally students will progress at different speeds. The material is set up for independent study. You can
allow students to work ahead at their own pace, or slow down as needed.

As an alternative, you can keep the class together and have “high flyers” work on extensions to the missions.
Several suggestions are given for each mission. This gives students a chance to review their learning and
add to their program in ways that interest them. Many students will want to experiment with what they’ve
learned, and we offer suggestions along the way to spur this creative tinkering. Remixes and extensions are
also an excellent opportunity for students to synthesize their learning and create their own projects. We
highly recommend including extensions and/or remixes into your pacing calendar.

Some extension activities include code reviews and class discussions. These are also excellent opportunities
to extend the learning of your students. Cross-curricular activities are also suggested, that can play on
student interests and help connect the world of computer science and programming to the real world.

–24–

 Fly with Python ​ ​ ​ ​ ​ ​ .

Managing a Class

Our CodeSpace learning platform makes it easy for you to create a class for your students to join, and
enables you to monitor their progress.

For help and step-by-step instructions, visit: https://learn.firialabs.com/curricula/code-space

If you are a Google Classroom teacher, you can import assignments from CodeSpace into your classes. For
instructions, go to “Virtual Tools with CodeSpace” in the Teacher Resources for Python with Robots.

If you need assistance for anything, please send an email to: support@firialabs.com

Here are the basics of the CodeSpace Teacher Dashboard

●​ Log in to CodeSpace and from HELP, select CLASS DASHBOARD
●​ Once you are in the dashboard, click + in the green bar, top right corner, to add a class.
●​ Assign each class a name, and allow members to join with a join code.
●​ You can assign Google Classroom as your LMS.
●​ After the class is created, you can edit the class, get a join code, disable joining, etc.
●​ You can delete a student using the “remove” function.
●​ Students go to CodeSpace and click the SELECT CLASS button.
●​ They can click the JOIN CLASS button and enter their join code for your class.
●​ The class will be activated and they are ready to start working!
●​ In the dashboard, you can see student progress, as a whole class and individually.

Class dashboard

Individual progress

–25–

https://learn.firialabs.com/curricula/code-space
https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials
mailto:support@firialabs.com

 Fly with Python ​ ​ ​ ​ ​ ​ .

Appendix D: Assessing Student Projects

Formative Assessment
The lessons give many opportunities for formative assessment. Any formative assessments you already use
in your classroom can be used with programming assignments. Each lesson has suggestions for assessment,
including the quizzes embedded in the interactive textbook, submitting programs from intermediate
objectives, exit tickets, and assignments.

Summative Assessment
Each lesson has at least one embedded quiz, a list of vocabulary and a list of Python coding. A multiple
choice test, short answer test, or programming test can be created with the information. Also, the final coded
mission can be submitted as an assessment. Each mission also has suggestions for extensions. An extension
can be required for assessment. Two rubrics are available to use with any mission, remix or final project.
They are the mastery rubric and the standards-based rubric, available at learn.firialabs.com.

Program Extensions
If you require an extension or remix, you can use one of the two provided rubrics or the checklist. Rubrics,
the checklist, and any additional assessment device can be used as a PDF form to fill out, or made into a
digital form. Either rubric can be modified to meet the specific goals of the mission or your own
requirements. Make a copy and edit as needed. You can also customize the rubric by adding specific
requirements or assigning point values before students begin.

Student-Teacher Conferencing
Student-teacher conferencing is integral to the learning process. This takes more time in class, but this is not
wasted time! Students will work harder and be more willing to do revisions, which is truly a workplace life
skill we’d like to instill in our students. To manage the process, it helps to have a submission window, rather
than one set due date. Once a student submits their work, call him/her up for a conference. Begin with an
open-ended question, like “Tell me about your project.” Then move on to the rubric. This may give you
insight into who did what, if working in pairs, and what challenges they encountered. As you conference
about the rubric, ask them what level of mastery they think they achieved, and why. Students are often more
critical of their work than they need to be. It’s a good time to emphasize challenges and mistakes are
learning opportunities rather than just being “wrong.” If time allows, students should be allowed to debug
and improve before a final submission of their work.

Peer Feedback
Before students submit a remix project or extension, they should complete a peer review. This may take
modeling a few times before students do it correctly. Remind students that revising is just as important here
as it is in English class. These revisions can lead to great conversations during the conferencing process.
They should go through the rubric and test the program just as you would. This will give them the chance to
find and correct mistakes before doing a student-teacher conference. Each remix planning guide includes
two peer reviews. A peer review form is included at learn.firialabs.com.

Early Finishers
Students who finish earlier than the submission deadline may enjoy having time to work on other unscripted
projects, and just trying things out. This is not wasted time! Learning through trial and error is time well-spent,
and we want to encourage curiosity for their motivation.

–26–

https://learn.firialabs.com/curricula/lift-off-with-codex/teachers-resources/lift-off-teacher-materials
https://learn.firialabs.com/curricula/lift-off-with-codex/teachers-resources/lift-off-teacher-materials

	Table of Contents
	
	Fly with Python Overview
	
	

